

How chemical reactions occur

0

Guide to Balancing a Chemical Equation

STEP 1

Write an equation using the correct

formulas of the reactants & products

STEP 2

Count the atoms of each element in

reactants & products

STEP 3

Use COEFFICIENTS to balance each

element

STEP 4

Check final equation for balance

(°

0

0

 $^{\circ}$

Left Side Notes Title: Evidence of a Chemical Reaction

Did the reaction produce bubbles?

Did the reaction produce a smell?

eplacement

Did the reaction replace any of the original substance?

emperature

Did the reaction produce a temperature change, either hot or cold?

ubstance

Did the reaction produce a new substance?

Types of Reactions

- There are millions of chemical reactions. The only way to be sure what your products will be is to run the reaction in the lab!
- Not very practical or cost effective... BUT
- There are **5** types of chemical reactions we can make some predictions for:
 - 1. Synthesis reactions
 - 2. Decomposition reactions
 - 3. Single Replacement/Displacement reactions
 - 4. Double Replacement/Displacement reactions
 - **5.** Combustion reactions

You need to be able to identify the type of reaction and predict the product(s)

Synthesis (combination)

aka composition reaction

$A + B \rightarrow AB$ Two or more substances combine

to form a new compound.

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(I)}$$

Synthesis (combination)

Where do we use synthesis reactions?

AT LEAST I KNOW THE

 \bigcirc

DIFFERENCEBETWE

- Medicine
- Flavorings
- Plastics

• High energy fuels ADECOMPOSITION REACT AND A SYNTHESIS REACT CLUE: 2 combine to make 1

A special type of synthesis reaction can be used to create many different types of flavors. Acetic acid splits into **acetate** $(C_2H_3O_2)^-$ and H⁺ and then recombines with another molecule to form a flavor molecule and a water in a reaction called **dehydration synthesis**.

ο

o

Ο 0 Predict the products. Write and balance the following synthesis reaction equations. Sodium metal reacts with chlorine gas $Na_{(s)} + Cl_{2(g)} \rightarrow$ 1) e- transfer making ions Na⁺ Cl⁻ 2) ions form neutral ionic compound = product **NaCl** 3) balance equation $Na_{(s)} + Cl_{2(g)} \rightarrow 2NaCl$

ο

ο

6

Solid Magnesium reacts with fluorine gas

$$Mg_{(s)} + F_{2(g)} \rightarrow$$

 $Mg^{2+} F^{-}$ product: MgF_{2}

Ο

0

О

Aluminum metal reacts with fluorine gas

ο

$$AI_{(s)} + F_{2(g)} \rightarrow$$

 $AI^{3+} F^{-} product: AIF_{3}$

$$AI_{(s)} + F_{2(g)} \rightarrow AIF_3$$

Balance

О

0

 $2AI_{(s)} + 3F_{2(g)} \rightarrow 2AIF_{3}$

0

CLUE:

1 Reactant falls apart into 2 or more Products

2HgO(*s*)

6

Ó

Mercury(II) oxide

Δ

2Hg(/) Mercury

+

O₂(g) Oxygen 0

Decomposing Dead Body One body falls apart into many products

PEGOMPOSITION EXCEPTIONS

- Carbonates and chlorates are special case decomposition reactions that do not go to the elements.
 - Carbonates (CO₃²⁻) decompose to carbon dioxide and a metal oxide
 - Example: $CaCO_3 \rightarrow CO_2 + CaO$
 - Chlorates (ClO₃⁻) decompose to oxygen gas and a metal chloride
 - Example: 2 Al(ClO₃)₃ \rightarrow 9 O₂ + 2 AlCl₃
 - There are more... but we will not explore those in Chemistry I

An example of decomposition reaction is an air bag. Automobile air bags inflate rapidly as sodium azide pellets decompose. A device that can provide and electric signal to start the reaction is packaged inside air bags along with sodium azide pellets $2NaN_3 \rightarrow 2Na + 2N_2$ sodium azide sodium nitrogen gas -Airbag Crash Airbag sensor Inflator trogen ga Sodium Crash Inflator

Single Replacement aka single displacement

B + AC

 \cap

0

 $A + BC \longrightarrow$

 $^{\circ}$

Single Replacement

A metal can replace a metal (+) OR a nonmetal can replace a nonmetal (-)

0

$A + BC \rightarrow AC + B \quad (if A is a metal) OR$ $A + BC \rightarrow BA + C \quad (if A is a nonmetal)$

(remember the cation always goes first!)

Ex. When H₂O splits into ions, it splits into into H⁺ and OH⁻ (not H+ and O⁻² !!)

Single Replacement

ο

Single Replacement

Another example of a single displacement reaction is when magnesium *replaces* hydrogen in water to make magnesium hydroxide and hydrogen gas:

To be continued later..... Go to 4. DOUBLE REPLACEMENT

Double Replacement $\bigcirc /$ aka double displacement The ions of **2** compounds exchange places in an aqueous solution to form 2 new compounds. $AB + CD \longrightarrow AD + CB$ ex. Purification (barium is poisonous) • $BaCl_2 + MgSO_4 \longrightarrow BaSO_4 + MgCl_2$

• $Ba^{2+}_{(aq)}$ + $2CI^{-}_{(aq)}$ + $Mg^{2+}_{(aq)}$ + $SO_4^{2-}_{(aq)}$ \longrightarrow $BaSO_{4(s)}$ + $Mg^{2+}_{(aq)}$ + $2CI^{-}_{(aq)}$

o

Ó

0

О

$AB + CD \longrightarrow AD + CB$ $BaCl_{2} + MgSO_{4} \longrightarrow BaSO_{4} + MgCl_{2}$ $Ba^{2+}_{(aq)} + 2Cl_{(aq)} + Mg^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} \rightarrow BaSO_{4(s)} + Mg^{2+}_{(aq)} + 2Cl_{(aq)}$

CLUE: Anions in 2 reactants swap their Cations

$Ba(OH)_{2(aq)} + CaSO_{4(aq)} \rightarrow BaSO_{4(s)} + Ca(OH)_{2(aq)}$

Double Replacement

Double Replacement Reactions occur when a metal replaces a metal in a compound and a nonmetal replaces a nonmetal in a compound COMPOUND → COMPOUND → COMPOUND + COMPOUND

Predict the products. Balance the equation

- 1. $HCl_{(aq)} + AgNO_{3(aq)} \rightarrow$
- 2. $CaCl_{2(aq)} + Na_3PO_{4(aq)} \rightarrow$
- 3. $Pb(NO_3)_{2(aq)} + BaCl_{2(aq)} \rightarrow$
- 4. $FeCl_{3(aq)}$ + $NaOH_{(aq)}$ >
- 5. $H_2SO_{4(aq)} + NaOH_{(aq)} \rightarrow$
- 6. $KOH_{(aq)} + CuSO_{4(aq)} \rightarrow$

Oxidation (aka: Combustion)

- Oxidation means loss of electrons
- Combustion reactions occur when a hydrocarbon reacts with oxygen gas.
- This is also called burning
- In order to burn something you need the 3 things in the "fire triangle":
 - A Fuel (hydrocarbon)
 Oxygen to burn it with
 Something to ignite the reaction (spark)

• Products in combustion are **ALWAYS** CO_2 and H_2O_2 . (although incomplete burning does cause some by-products like carbon monoxide)

CLUE: 1 of the reactants is O₂

chemical Reactions

Ms. Ristow's Handy Checklist for figuring out what type of reaction is taking place:

Follow this series of questions.

When you can answer "yes" to a question, then stop!

- 1) Does your reaction have oxygen as one of it's reactants and carbon dioxide and water as products? If yes, then it's a combustion teaction
- 2) Does your reaction have **two (or more) chemicals combining** to **form one** chemical? If yes, then it's a **SYNTHESIS REACTION**
- 3) Does your reaction have one large molecule **falling apart** to make several small ones? If yes, then it's a **pegomposition REAGTION**
- 4) Does your reaction have any molecules that contain **only one element**? If yes, then it's a **SINGLE REPLACEMENT REACTION**
- 5) If you **haven't answered "yes"** to any of the questions above, then you've got a **DOUBLE REPLACEMENT REACTION**

 $A + B \rightarrow AB$ What you could put on the LEFT side of this $AB \rightarrow A + B$ worksheet $A + BC \rightarrow B + AC$ $AB + CD \rightarrow AD + CB$ $C_{X}H_{Y} + O_{2} \rightarrow CO_{2} + H_{2}O_{2}$

Steps to Writing Reactions

1. Identify the <u>type</u> of reaction

Predict the product(s) using the type of reaction as a model

3. <u>Balance it</u>

Don't forget about the **diatomic elements**!

Remember: In a compound, it can't be a diatomic element because it's not an element anymore, it's a compound!

0

0

 \bigcirc

STOP END OF DAY ONE NOTES

• By using an <u>activity series</u>, we can determine what elements will react, and what *products* they will

form...

is a chart of metals listed in order of declining relative reactivity. The top metals are *more reactive* than the metals on the bottom.

e Activity Series

The *first five elements* are highly reactive metals that will react with cold water, hot water, and steam to form hydrogen gas and hydroxides.

Activity Series of Metals

Metal	Symbol	Reactivity
Lithium	Li	displaces H ₂ gas from water, steam and acids and forms hydroxides
Potassium	К	
Strontium	Sr	
Calcium	Ca	
Sodium	Na	
Magnesium	Mg	displaces H ₂ gas from steam and acids and forms hydroxides
Aluminum	Al	
Zinc	Zn	
Chromium	Cr	
Iron	Fe	displaces H ₂ gas from acids only and forms hydroxides
Cadmium	Cd	
Cobalt	Со	
Nickel	Ni	
Tin	Sn	
Lead	Pb	
Hydrogen gas	H ₂	included for comparison
Antimony	Sb	combines with $\mathrm{O_2}$ to form oxides and cannot displace $\mathrm{H_2}$
Arsenic	As	
Bismuth	Bi	
Copper	Cu	
Mercury	Hg	found free in nature, oxides decompose with heating
Silver	Ag	
Paladium	Pd	
Platinum	Pt	
Gold	Au	

0

Ó

Li, Rb, K, Ba, Sr, Ca, Na — React with cold water and acids, replacing hydrogen. React with oxygen, forming oxides.

Mg, Al, Mn, Zn, Cr, Fe, Cd — React with steam (but not cold water) and acids, replacing hydrogen. React with oxygen, forming oxides.

Activity Series of Metals

Co, Ni, Sn, Pb – Do not react with water. React with acids, replacing hydrogen. React with oxygen, forming oxides.

H₂, Sb, Bi, Cu, Hg - React with oxygen, forming oxides.

Ag, Pt, Au — Fairly unreactive, forming oxides only indirectly.

 $^{\circ}$

d for comp

Cadmium

Cobalt

Nickel

Tin

Lead

Lluder

Cd

Co

Ni

Sn

Pb

